TRANSIENT IN A THERMODIFFUSION COLUMN
WITH TEMPERATURE ASYMMETRY

G. D. Rabinoviech and R. Ya. Gurevich UDC 621.039.341.6

On the basis of an already known physical model, quantitative relations are derived
which describe the transient process in thermodiffusion columns with temperature asym-
metry.

The theory of thermodiffusion columns developed by Jones and Ferry in [1] is based on an idealiza-
tion of the process, which disregards any temperature asymmetry due to the unattainability of both a uni-
form heating of the active column surfaces and a constant clearance between them.

For this reason, the heat-transfer process in a real thermodiffusion apparatus cannot be described
by the equation

= Heo— (K, + K2 (1)
dz

since the latter does not account for perturbations due to temperature asymmetry.

In view of this, the authors of [1] have added inside the parentheses in (1) another term Kg which
represents the so-called stray transfer. It has been shown in [2] that, in the physical sense, the premise
on which the same term Kg(dc/dz) is introduced into (1) contradicts the experimental data on the partition
of liquid isotope mixtures and, therefore, another physical model has been proposed instead, in which a
column with stray convection is treated as an aggregate of column operating in the extraction mode and
with the stray convection current acting as the extractor. The main parameter which determines the devia-
tion of a column performance from the performance of the ideal column according to Eq. (1) is, to the first
approximation,
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The larger is this parameter, the larger appears the effect of stray convection. Relation (2) explains why
the test results in the partition of molecular liquid and gaseous mixtures confirm the Jones —Ferry theory
based on Eq. (1). Indeed, for mixtures of different gases and liquids and magnitude of «, of the order of
10-%, is rather high and, consequently, even at a relatively high degree of temperature asymmetry the
parameter w is sufficiently small to make the deviation between a real column and an ideal column per-
formance slight. The thermal diffusivity for isotopic mixtures is by one order of magnitude smaller than
that and, therefore, in thermodiffusion plants designed for isotope partitions the parameter » may become
sufficiently high to make the performance of a column deviate quite significantly from the theoretically pre-
dicted performance. This fact has been emphasized, particularly in [3]. In the meantime, the quantity Kg
introduced by the authors of [1] is independent of o and, therefore, identical hydrodynamic conditions
should, according to [1], produce equal results in the partition of molecular and isotopic mixtures.

In this way, the equation of transfer in a real thermodiffusion apparatus is characterized, as has
been shown in {2], by the additional term which accounts for stray convection, Obviously, the transient pro-
cesses in a real and in an ideal apparatus will differ and the time to reach the enriched-product extraction
mode will also be different.
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In this article we consider the case of temperature asymmetry when the column contains two stray

currents, equal in magnitude but opposite in direction and characterized by equal transfer coefficients H
and K,

According to [2], in this case
j' = He'd —Kﬂ— 4 oc/, (3)
dz

Jr

]‘" — HC”?’ __K de . O'C”. (4)
dz
For the fransient state we have, evidently,
m’ o = —divj’; m’ LA divj". (5)
dt
Assuming, for simplicity, that m' =m", we obtain from (5), taking into account (3) and (4) and changing
to dimensionless variables:
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Let us consider the simplest case of a transient process in a real column connected at one end to a
large reservoir, with cc = const, Instead of the last two equations we have now:

oc 0%’ oc’
e A e (6)
00 oy oy .
oc” 0%’ oc”
= 4% ) (D
a0 dy* dy

The solution to (6) and (7) must satisfy the following boundary conditions:

¢ lomo = ¢" oo = Ci; (8)
, oc’ ,

(aH—i— oc — K = gC¢ ‘z— ; (())

\ az 2=L

ac/l
H—oc' —K =—ac'|_,; (10)
(a c P )Z=L ¢ |,

€ g == Co} &m0 = Co- (11)

Conditions (9) and (10) indicate that the stray current is flowing from one half of the column to the other *

A solution of (6) and (7) with the conditions (8)-(11) by the method of integral ILaplace —~Carson trans-
formations yields the following image functions:

_ : Ash A
@ — aexp [~—’—°—(ye~y)] ik ; (12)
2 “Achhy, 4+ —2—~7»sh-?»ye
_ A2 sh? 2, -
4 = aexp [“L(ye—'y)] hShly +x : uye L (13)
2 i chhy, + - hsh g, (xz chig, + =~ hsh lye\)

—_— a
where A = l/ %— -+ p and u is the image of the difference ¢ ~ c¢;. Inverting to the original functions and

considering that the concentration at the positive end of the column is, for this pattern of stray fluxes,
equal to the arithmetic mean of the concentrations at both, i.e., ¢ = (¢! + ¢") /2, we have

* A rigorous formulation of the boundary conditions is given in [2].
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where 4, are the roots of the characteristic equation
2
tg py, = — (15)

Y
In the steady state there will remain only the first two terms in (14) and, when the hyperbolic sine is
replaced with its exponential equivalents, we have

A = = (1 — %) (3 — %), (16)
P2

which is the same results as in [2]. A linear approximation cc = a + be yields, instead of (5a),
ac’ %’ ac’
b -+ n
00 ay® dy

(17
" 2 "
ac _ 0% b —) oc
d0 oyt Oy
For the positive end of the column the solution to these equations with conditions (8)~(11) is
1 thkyy [, — (ky — %) th kg, ] th koy X 2
C~—c=—a+bc 19¢e + 1 2 1Je. e +2
e by, Rt — kg (e dd oy (1 — i) 12
o
22— kP rE—kyl ;
[ ch iy — g, (y — %) sh ] exp(LyTiyi o) Bachdy—g.(b—n)shil exp( e )
€ e
x (12— k2 ) (A, ch Ay — kot shA,) T (r2 — &2 42) (hy ch Dy — Roy, sh D) '
where
R Al G a8
i I\
k1:~2——(b+%), kz:?(b_%)»
and the roots r, are determined from the equation:
thr, = —2m (19)

T YA

when ¢, = 0.5,b < 0 and Eq. (19) has purely imaginary roots. When ¢; < 0.5, then b > 0 and Eq. (18) may
have, in addition to the imaginary roots, one real root, if b —n})/2 > 1.

it follows from (14) that the change in concentration at the positive end of 4 column depends on two
parameters: » and ye. )

The character of this relation is shown in Fig. 1 for yg = 0.3. As can be seen here, the most intensive
partition occurs when w =0 (curve 1 plotted for ¢y = 0.5). As the parameter  increases, the transient
time becomes shorter and the final effect of the partition process is diminished.
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ae ] It is particularly noteworthy that, up to 4

| LA =10-3 (initial period), stray convection plays a
/4 2\ practically insignificant role in the process, which
§ / is very important for the experimental determina-
/V 5 tion of thermal diffusivity.
/, sl In liquid thermodiffusion columns it is hardly
4 _ L/ A feasible to ensure thermostatic protection at the
%/ % cold and at the hot surface carefully enough to re-
1T duce the temperature asymmetry to less than 0.2°C.
z With this estimate, one can now determine the ef-
r/ fectiveness of liquid thermodiffusion columns.
: oot
A= i - —— — For an example we will use the data in [4] on
’0, 2 46607 2 46607 2 46610 2 8 bromide partition in bromobenzene: o =0.04, T
Fig. 1. Curves representing the percent incre- = 340°K, AT =130°C. Equation 2) yields w = 0.755.
ment of concentration at the positive end of a This value of » corresponds to a steady-state Ac
column (Ac = cg — ¢p), as a function of time 6 - =7.2%in Fig. 1 Taking the ratio (Ac)/ (Ac), as the
(dimensionless), for y, =0.3andn =0 (1), 3.33 measure of effectiveness, where (Ac), denotes the
), 6.7 (3), 10 @), 13 (5). increment of concentration at the positive end of

the ideal column, we find here (Ac)/ (Ac), = 0.96.
The value thus obtained may, evidently, be seen as the upper limit of technical feasibility.
When 6T =1°C, we already have only (Ac)/ (Ac)y = 0.8.

Indeed, as is well known, the thermodiffusive partition process is never carried to 2 complete steady
state and extraction from the column begins when the concentration at the end of the column is below its
equilibrium level. In this case, as is evident from the diagram, stray convection has less influence on the
effectiveness of partition,

Thus, for example, for w = 3.33 after a time 9 =4-1072 the effectiveness will still be sufficiently
high and equal to (Ac)/ (Ac), = 0.92, while (Ac)/ (Ac), = 0.83 in the steady state.

The results obtained here may be used as a basis for an efficient design and operation of thermo-
diffusion apparatus. :

NOTATION
H, K are transfer coefficients;
o is the extraction;
c is the concentration;
c=1—c;
L is the column length;
y =Hz/K;
Ve = HL/K;
6 =H%r/mK;
m is the mass of liquid per unit column length;
b4 is the longitudinal coordinate;
a =cc; )
a is the thermal diffusivity;
T is the mean temperature in a column;
AT is the temperature difference between the hot and the cold wall;
6T is the temperature difference between the two stray fluxes;
p is an operator;
t refers to the first stray flux;
L refers to the second stray flux.

Superscripts

! refers to the first stray flux;
" refers to the second stray flux.
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Subscripts

0 denotes the initial state;
e denotes the value at the positive end of the column;
% denotes the equilibrium value, steady state.
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